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In experiments on excitons and spin-polarized atomic hydrogen, one deals with a gas involving
two Bose branches (for example, paraexcitons and orthoexcitons). Based on a simple model for
the coupling between these two components, we discuss how interconversion processes affect Bose
condensation in such a system. Our analysis is based on an exact transformation to renormalized
Bose particles which are uncoupled. We give results for the condensate fraction as a function of
the temperature in the case when the two original Bose particles (a and b) are not in chemical
equilibrium (i.e., the chemical potentials o, and u, are not equal) as well as in the case of chemical
equilibrium (ge = ps). Our results are of interest in connection with current attempts to observe

Bose condensation in atomiclike gases.

PACS number(s): 05.30.Jp, 71.35.4+z, 67.65.+z

I. INTRODUCTION

In this paper, we investigate Bose-Einstein conden-
sation (BEC) in a simple model of a coupled two-
component Bose gas. While we believe our results are
of general interest in relation to recent attempts to find
BEC in atomic gases (for reviews, see Ref. [1]), our spe-
cific motivation is to understand experiments done on
a gas of optically-excited excitons in high quality Cu,O
crystals [2,3]. The lowest energy exciton in this system is
split into two levels by the electron-hole exchange inter-
action: the spin singlet (S = 0) paraexciton is the lowest
energy level and the spin triplet (S = 1) orthoexciton is
12 meV higher. Interconversion between these two ex-
citon species involves a time that is much longer than
the exciton lifetime due to electron-hole conversion. Our
model consists of a two component Bose gas, which is as-
sumed to be in thermal equilibrium but not necessarily
in chemical equilibrium (i.e., the number of Bose parti-
cles of each species is determined by external conditions,
such as pumping rate, etc.) For a review of current ex-
perimental evidence for BEC in the paraexciton branch
of Cuy0, we refer to the paper by Wolfe, Lin, and Snoke
in Ref. [1]. For related problems in the context of the two
lowest energy states of spin-polarized atomic hydrogen,
see Refs. [4-6].

As a first step, we believe a detailed theoretical in-
vestigation of the simple model that we consider here
is worthwhile. It is surprisingly rich in content and, as
far as we are aware, this model has not been studied in
the literature. In Cu,O, this interconversion coupling in-
volves the emission (ortho — para) or absorption (para
— ortho) of an acoustic lattice phonon, which takes care
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of energy and momentum conservation. This more real-
istic model for interconversion is briefly discussed at the
end of the paper.

II. MODEL HAMILTONIAN

Motivated by the coupled two-component exciton
gas in Cuz0, we introduce a simple model of a two-
component Bose gas described by the grand canonical
“Hamiltonian,”

-f{ = fI _ll'aNa _l‘l‘bNb
= > [Bralan + BEBLo. + M(albe + Blan)], (1)
k

where

E;': = €k — Ha;
E = ek + 20 — . (2)

This describes two Bose gas branches (lower one = a
and upper one = b, separated by an energy 2A). The
center-of-mass kinetic energy is denoted by ;. The cre-
ation (af, ET) and annihilation operators (&, 13) of the two
branches satisfy the usual Bose commutation relations,

[ak,al]_ = Okwrs

[bx, 0L ] = Sk (3)

but commute between different branches. The coupling
between a and b bosons is treated as a momentum-
independent constant M for simplicity. The chemical
potentials u, and yp are determined by the number of a
and b bosons. We assume that our two component Bose
gas is in thermal equilibrium (common temperature) due
to interparticle collisions but not necessarily in chemical
equilibrium (that is, p, may be different from pp).

The advantage of working with (1) is that it can be
diagonalized in terms of new boson é and d operators.
One finds that the appropriate transformation matrix is

1075 ©1995 The American Physical Society



1076 HUA SHI, HADI RASTEGAR, AND A. GRIFFIN 51

¢\ _ (cosf —sinf g (4)
dr /]~ \sinf cos8 by |

where

cos2 6 1 ~'

g b =3 (1 %) (5)
with

A'=/~y24+M2>0, (6a)

Y=A+p_ (6b)
and

1
po = 5 (pa = p) - (7)

When diagonalized, the “Hamiltonian” is given by
K = (Bgéler + Efdldy) (8)
k

with the renormalized energies

c E¢ Eb
g’é}:%“'ww—wm& 9
k

where we have defined

o = 5 e+ ) - (10)

In the above analysis, we have assumed for simplicity
that ef = e = e,. In the more general case when £§ #
ez, we need to make the replacements,

Ep = GZ,

1
A$A+§(az—EZ)EAk. (11)

Strictly speaking, this generalization should be used for
excitons since the paraexciton and orthoexciton masses
are somewhat different (see Wolfe et al. in Ref. [1]).

We have reduced our coupled two-component Bose gas
to a gas of two uncoupled bosons. In the limit of M = 0,
the ¢ bosons reduce to a bosons and the d bosons re-
duce to b bosons. However, when M # 0, the c- and d-
boson operators involve linear combination of the a- and
b-boson operators. It is useful to emphasize the difference
between these new ¢ and d bosons and the quasiparticles,
which arise in the Bogoliubov theory of a weakly inter-
acting one-component Bose gas [7,8]. While the latter
theory is also based on an exact diagonalization, the Bo-
goliubov annihilation operator involves a superposition
of both creation and annihilation operators of the origi-
nal Bose particles. This is related to the fact that the
Bogoliubov transformation makes use of the existence of
a Bose condensate as a particle reservoir. As a result,
the number of Bogoliubov quasiparticles is not fixed and
thus there is no associated quasiparticle chemical poten-
tial. In contrast, the é and d annihilation operators in
(4) only involve a superposition of annihilation operators
(& and b). The transformation (4) makes no use of the

existence of a condensate reservoir and is, thus, valid at
all temperatures.

As with the a and b bosons, the number of ¢ and
d bosons is fixed and one can introduce the associated
chemical potentials u. and pg. If one diagonalizes the
Hamiltonian H in (1), one obtains using (4)

H =) (Egeler + Efdldy) , (12)
k
where
gé}zek+A¥\/m. (13)
Using this, we can rewrite (1) in the form
K=H-pN,—psNy , (14)

where one easily finds
He = E:',i - Ej _ 2 2
na=ES B [ = VA+p )2+ M
+utr FVAZ+ M2, (15)

However, in this paper, we work in terms of Ef and Eg
rather than Ef and E.

With (8), we are dealing with two Bose gases which are
uncoupled. The discussion of BEC is a straightforward
extension of that for a one-component ideal Bose gas,
discussed in all textbooks on statistical mechanics [7]. In
particular, the momentum distribution of the new ¢ and
d bosons are given by the usual Bose distributions,

1
2 _yatay

<nk> - <ckck) - eﬁEi — 11
1

ady g3t 3y
(”k)—(dkd@—;m—_l-

(16)

We emphasize that the two Bose gases are in thermal
equilibrium but not necessarily in chemical equilibrium.

We note that since A’ > 0, we have Ef < Ef and so
we only expect BEC of the ¢ bosons. Let us examine the
possibility of BEC in the zero center-of-mass momentum
state k = 0. Since we have

Bfo=A—A'—pp (17)
we will have BEC for the ¢ bosons when
uy =A—A". (18)

Since A and M are given constants, this condition is a
relation [using (6a) and (6b)] between pu and u_,

(A—py)?=(A+p ) + M. (19)

This is equivalent to a relation between po(= py + p—)
and pp(= p4 — p—). Assuming (18) holds, the renormal-
ized boson excitation energies in (9) reduce to

E,‘; = €k,

Ef = e + 24/, (20)
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in the Bose-condensed state of the ¢ bosons (i.e., at T' <
T.).

In order to determine pu and pu_, we use the formulas
No =Y (alax),
k
Ny = (blbx) (21)

k
which implicitly give the number of @ and b bosons in
terms of the chemical potentials u, and p,. Using the
normalized boson representation, (21) can be rewritten
as

N, = (sin?)Ng + > [cos2 0(&léx) + sin? a(J;&k)] ,
k#0
= (cos? ) N§ + Z [sm H(ATék) + cos B(zﬁdk)]

k#0

(22)

where N§ is the number of ¢ bosons which are in the

k = O state. The expression in (22) shows explicitly that

while only the lower energy ¢ bosons are condensed, this

implies BEC of both a and b bosons. Making use of (5),
(16), and (20), in (22), we obtain for T < T,

1
NO + Z [ Ber — eﬁ(€h+2A’) _ 1] )
k#0

N, + Ny =

(23a)

_ ’Y’ . ,yl 1
Na = Ny = 77No —EZ[W
k#0

1
T 1] . (23b)

The two formulas (23a) and (23b) are the basis of our
analysis in Sec. III. Recalling from (6a) that ' is a known
function of A’ and M, the coupled equations (23a) and
(23b) uniquely determine the value of A’ and N§, for
given values of M, T, N,, and N;. Perhaps surprisingly,
the values for A’ and N§ given by (23a) and (23b) are
seen to be independent of the initial energy level splitting
2A between the a and b bose branches. In turn, the new
energy level difference 2A’ [see (9)] is also independent
of the original level difference 2A. This feature gives us
more confidence in our simple model for the coupling as
defined in (1), which does not take into account energy
conservation during the interconversion process. Once
we have the value of A’, we can determine u; and p_
using (6b) and (18). Clearly the values of the chemical
potentials p, and u; depend very much on the value of
the energy splitting 2A.

III. NUMERICAL RESULTS

In this section, we present some explicit results based
on the coupled equations (23a) and (23b), which can be
expressed in terms of a standard Bose-Einstein integral

7,
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1
———F3/2(a) =

)‘% (24)

1 1
v 1§) eferta 1"’
where the thermal de Broglie wavelength is Ay =

(27rﬁ2/mk3T)1/2. F3/5(a) is a decreasing function of a,
with

One obtains

Ng + np = N + /\3 [F3/2(2,8A’) +2.612] (26)
,yl

Na =y = 5§ ng A, /\3 [F3,2(28A") — 2.612] , (27)

where A’ = /42 + M? and n, = N,/V, etc. In recent
experiments on optically-excited Cu;0, it is generally be-
lieved that the paraexcitons and orthoexcitons are not in
chemical equilibrium (see the review paper by Wolfe et al.
in Ref. [1]). In this case, the values of n, and n; in (26)
and (27) are externally determined and thus p, # pe,
as mentioned in the last paragraph of Sec. II. In Fig. 1,
we plot the BEC transition temperature T, (at which n§
vanishes) as a function of the density n, for given values
of M and n,. We chose M = 0.6 meV and n,, np in
the range of 107 — 10'° cm™3, as being appropriate in
experiments on CuzO [1-3]. Figure 1 shows that for a
fixed density of a bosons, T, increases as the density of
b bosons increases. This implies that the presence of b
bosons and the interconversion between b and a bosons
make it “easier” for the system to Bose condense. In a
two-component exciton gas in Cu,O, the BEC line (T,
vs ng) for the paraexcitons lies higher than that for an
ideal Bose gas of density n,.

The condensate density below T, is also modified by
the interconversion interaction M. In Fig. 2, we plot the
density of a and b bosons in the condensate as a function
of the temperature T, with comparison to the case of an
ideal gas. As we have noted earlier, both a and b bosons
will Bose condense, while only the low energy ¢ bosons

— T
nb=3>(10'n cem™ —

BEC critical temperature (K)

0 n PR SR S N R L L 1 1 ' s 1
0 1 2 3

Ng (10%%cm™)

FIG. 1. Bose-Einstein condensation transition temperature
vs density of a bosons, for different values of the density ns
of the b bosons. At fixed nq, T¢ increases with n.
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FIG. 2. Condensate density vs temperature for both a
and b bosons. We choose ny = 3n, = 2.25 x 10*° cm™3.
Bose-Einstein condensation occurs at T, = 79 K for both
components in the presence of interconversion. For the cor-
responding uncoupled ideal gases (dashed lines) T¢ = 37 K
and T? = 78 K. Note that all the bosons are condensed into
the zero-momentum state at T = 0.

do so. In the language of excitons in Cu;0O, we have

ara 1 ’YI c

1 !
ngrtho — 5 (1 _ %)TLS ,

with nb>™® + ngrthe = ng. Bose condensation in both

branches occurs at the same temperature, even though
the densities of the two species are different. In contrast,
if a and b bosons are independent of each other (M = 0),
BEC occurs at different temperatures (if n, # np).

Another interesting feature shown by Fig. 2 is that at
T = 0, all the a and b bosons are condensed into the
zero-momentum state, which is exactly what happens in
an ideal one-component Bose gas. As is well known, in
a one-component interacting Bose gas, a finite number
of particles are removed from the condensate even at
T = 0 [7]. Thus, we see that the consequences of inter-
conversion and interparticle interactions on BEC are dif-
ferent.

To examine the effect of the coupling strength M on
BEC, in Fig. 3 we plot T. as a function of n, for different
values of M. As M varies from zero to “infinity” (26M >
1), the transition temperature increases for fixed values
of n,. In other words, as the interconversion process be-
come stronger, BEC becomes “easier” in the system. In
the limit of very large M, i.e., very strong coupling, the
BEC transition line becomes very close to that of a one-
component ideal gas with a particle density equal to the
combined particle density of the two components. In this
case, the interconversion process “blurs” the distinction
between a and b particles. A plot of the effective con-
densate density (n§ = n@ + n8) versus temperature at
different values of M (Fig. 4) also indicates the “posi-
tive” effect of interconversion interactions on BEC. The
curve corresponding to M = 0 describes two uncoupled

(28)

HUA SHI, HADI RASTEGAR, AND A. GRIFFIN S1

150 — T -
< [ ng=ny L
< L - ]
©120 | P ]
=] L .-

a ./
P P
g 90 b e -
- «€ - 4
€ N -
g . - ]
o 60 P .~ 0 -1
0 - ]
= R <
© 30+ 4
(@) Vo B
L
& L/
0 L 1 L " I 1 n L n 1 L L n n
0 1 2 3

Ny (10"%em™)

FIG. 3. T. vs n, for different values of the interconver-
sion coupling strength M. These results are for the special
case no = np, where the coupling has the strongest effect.
The BEC transition temperature increases with the coupling
strength M.

gases of the same density which Bose condense at the
same temperature (hence nd = n?).

Finally, for completeness, we discuss the chemical po-
tentials p, and pp both below and above T,.. For this we
need a more general version of (26) and (27) valid for T

above T,

N +np = F3/3(a_) + F3/2(ay ),

,yl
Mg — Np = E[Fs/z(a—) - Fs/z(a+)] ) (29)
where we have defined
ar =6(A —py F A, (30)

and the BE integral is given by (24). If we assume n, <
np, inspection of (29) shows that we must have v/ < 0
[since a_ < oy, we have F3/3(a_) > F3jp(ay)] . For
given values of n,, ny, M, and T, one can solve (29) for

\
PSP RPN I

0 20 40 60 80

Temperature (K)

FIG. 4. The total condensate demsity (n2 = nl + n))
vs temperature, for different values of M. We take
Ne = ny = 1.5 x 10'° cm~3. The condensate fraction at a
given temperature increases with M.
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T T

N a component

Chemical potential (meV)

Temperature (K)

FIG. 5. Chemical potential u, vs T for a bosons in a
two-component Bose gas, for ny = 3n, = 2.25 x 10'® cm™3.
For comparison, we show an ideal Bose gas of density n,
(dashed line), where T. = 37 K. A kink appears at the tran-
sition temperature T. = 79 K in the coupled system.

A’ and p+. Using (6a) and (6b), u_ is given by

_1/A12_M2_

for n, < ny. Knowing p4, we can find p, and pp.

In Fig. 5, we plot the temperature dependence of the
chemical potential p,(T") for the a bosons, for 2A =
12 meV and np = 3n, = 2.25 x 10'° cm—3. The “kink”
appears at the BEC transition temperature T, = 78 K of
the coupled system. For comparison, we plot the equiva-
lent result for a one-component ideal Bose gas of density
ng (in this case, p, = 0 for T < Tgec = 37 K). In Fig. 6,
we give the analogous results for uy(7T"). One sees that,
in contrast to an ideal Bose gas, p, and yp both vary
with temperature in the Bose condensed phase. We also
note that (see discussion at the end of Sec. IT) u, and pp
depend very explicitly on the magnitude of the assumed
energy level splitting 2A, in contrast to the results in
Figs. 1-4.

(31)
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FIG. 6. Chemical potential up, vs T for b bosons, for the
same parameters as in Fig. 5. For comparison, we show an
ideal Bose gas of density n, (dashed line) where T. = 78 K.
The kink is again at 79 K, the BEC transition temperature
of the coupled system (see Fig. 2).
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Whether the two Bose branches are in chemical equi-
librium or not depends on the rate of interconversion
(see also Refs. [4-6]). If this rate is rapid enough,
then one has chemical equilibrium defined by the con-
dition p, = pp = p [4]. In this case, u— = 0 and
p+ = p. From (6a), (6b), and (18), this means ' = A
and A’ = VA2 + M2 = A — u, and thus the common
chemical potential is determined by (T < T¢)

_,/A2+M2_

In this case, Egs. (26) and (27) should be viewed as de-
termining the value of n§ and n, — np for a given value

(32)

of ng + np = n (for fixed values of M and T). More
specifically, (26) gives
ng =mn— /\% [Fg,/z(zﬁ\/zv +M?) + 2.612] ., (33)
T

while (27) reduces to

Ng — Np =

o A, e [F3/2 (28+/AZ + M?) — 2. 612]
_ A 2F3/2
-2 [ (26v/A% + )]

The BEC transition temperature is where nf in (33) van-
ishes. For excitons with the level splitting 2A = 12 meV,
the requirement of chemical equilibrium results in almost
all the particles being paraexcitons (the lower a state)
and very few being orthoexcitons (the upper b state).
As a result, the features related to BEC are almost un-
changed from those of an ideal Bose gas composed of
paraexcitons.

(34)

IV. CONCLUSIONS

In this paper, we have given a careful analysis of a two-
component Bose gas in which a simple mechanism for in-
terconversion is allowed. It gives considerable insight into
the physics involved in BEC with two components. In a
sense, our model calculation is the simplest generaliza-
tion of the original work by Einstein in 1925. The prob-
lem can be reduced to a gas of two noninteracting Bose
gases with a renormalized energy spectrum. The result
is that while BEC only appears in the lowest renormal-
ized Bose branch, this corresponds to BEC of both of the
original Bose species. The results in Figs. 1-4 show how
the interconversion interaction affects BEC. In a coupled
two-component Bose gas such as excitons in Cuy0, we
find the paraexcitons (the lowest energy state) will start
to Bose condense at a higher transition temperature than
the equivalent ideal gas does, as a result of the presence of
interconversion between orthoexcitons and paraexcitons.
This effect is opposite to that of two-particle collisions.
The present results are of interest in the current experi-
mental search for BEC in the two-component exciton gas
in optically-excited CuzO [1-3]. They should be relevant
to spin-polarized atomic hydrogen, which also involves
two low-lying Bose branches [4-6].
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There are several important generalizations which are
needed to make the present work more relevant to exper-
iments in CuyO. We have ignored exciton-exciton two-
particle interactions [8], which would make our problem
into an interacting two-component Bose gas. In addi-
tion, our model Hamiltonian should also really include
the acoustic lattice phonons involved in the interconver-
sion between orthoexcitons and paraexcitons in Cu2O [1].
This is a more difficult problem since it leads to a hy-
bridization of the lattice acoustic phonons and the exci-
ton branches. However, it is useful to briefly relate the
results of our simple model (1) to those based on such
a coupled exciton—acoustic-phonon system. The latter
problem is best dealt with thermal Green’s functions [8],
in which one includes the phonon-induced interconver-
sion through its effect on the exciton self-energy. The
a-exciton self-energy corresponding to one phonon ex-
change can be shown to be given by the following expres-
sion [9]:

b
Ea(k,w) — ZIMqlzN(wq) N(Ek——q)
q

w = (Ell;—q - “’q) ’

(35)

where wy = cq is the acoustic-phonon energy, N(F) is the
Bose distribution, and E? is defined in (2). For compar-
ison, one may verify starting with (1) that the a-exciton
Green’s function,

1
w— B¢ —S.(k,w) "’

Go(k,w) = (36)

has the following exact self-energy:

|M]?

Ea(k, w) = w—;—EE .

37)
It is easy to check that the poles of G,(k,w) are given
by E¢ and E¢ in (9).

Comparing (35) and (37), we see that when the cou-
pling to the lattice phonon is included, the exciton self-
energy depends on the occupancy of the exciton states as
well as the number of phonons present. This introduces a
much more nonlinear aspect to the coupled-exciton prob-
lem, with new physics. In a future paper, we will use
(35) and (36) (and the analogous expressions for the b
boson, in which a phonon is emitted) as the basis for a
more realistic study of BEC in a gas of orthoexciton and
paraexcitons [9].

Finally, we emphasize that throughout our discussion,
we have assumed that the densities of a and b bosons (n,
and np) are determined externally (or are appropriate
to chemical equilibrium). A much more ambitious prob-
lem is to work with the kinetic equations, which describe
the time-dependent values of n, and n; in the optically-
pumped exciton experiments of Refs. [1-3].
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